Can OBS networks help constrain
moment tensor inversions?
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Introduction
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Figure 3.1: Present-day tectonic sketch of the Nubia-Eurasia boundary. Deformation rates are in mm/ year.
Figure from Serpelloni et al. [2007].




Instrumental Seismicity
(post 1960)

Portuguese IM catalog
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Setting:

BB Station Coverage
(Permanent + Temporary)

Background Seismicity
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How good are these MTs? How resolvable?




Method

Linear inverse problems:
b=Aa

N

data parameters to be found

Numerical Recipes by Press et al.,
chap. 2.6, 15.4, 15.6.




Waveform inversion of MT
Linear problem (if the source position and time are known)

parameters to be found = moment tensor components

Green’s functions data




Singular Value Decomposition

Singular Vectors

=V - [diag (1/w;)] - UT = Solution by means of SVD

Singular Values

Singular Values Singular Vectors

Advantage:

SVD expresses the uncertainty
through singular vectors in a
transparent way.
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Figure 15.6.5. Relation of the confidence region ellipse Ay? = 1 to quantities computed by singular
value decomposition. The vectors V;, are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values w;. If the axes are all scaled
by some constant factor o, Ay? is scaled by the factor a?.
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Figure 15.6.5. Relation of the confidence region ellipse Ay? = 1 to quantities computed by singular
value decomposition. The vectors V;, are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values w;. If the axes are all scaled
by some constant factor o, Ay? is scaled by the factor a?.




A 2-D cross-section of the 6D error ellipsoid
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A 2-D cross-section of the 6D error ellipsoid
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We need:

e Green’s functions
(epicenter, depth, crustal model,
frequency range, stations location)

* Estimate of data error

(Errors are assumed to be Gaussian)
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Application




Epicenter

Reference Study Parameters

~10° -8 -6

Epicenter:
35.9330 N, 10.4950 W

Depth:
40 km

Frequency Range:
0.028 — 0.08 Hz

Velocity Model:
1D regional model of Stich

et al. (JGR 2003), 7 layers

Station Network:
IB (7 land stations)

Focal Mechanism:

070212




Strike, dip, and rake can be computed for each point of the 6D
ellipsoid, and expressed as a function of the distance from the
ellipsoid center:
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Kagan’s Angle
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Kagan’s Angle:
quantifies the difference

between two DC solutions
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Kagan’s angle near the ellipsoid surface.
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Histogram of Kagan’s angle
near the x? = 1 ellipsoid surface:
a simple representation of the MT uncertainty.
Only DC part is treated in this way.
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Kagan’s angle near the ellipsoid surface.
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Histogram of Kagan’s angle
near the x? = 1 ellipsoid surface:
a simple representation of the MT uncertainty.
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Different Scenarios




Variation of Kagan’s angle with source depth

IB network (land stations)
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At the source depth of 10 km
the resolvability is excellent.
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The same variation with the source depth
IB network (land stations)
but also expressed by means of nodal lines
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Variation of Kagan’s angle with station distribution
(source depth of 40 km)
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Variation of Kagan’s angle with station distribution
(source depth of 40 km)
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Variation of Kagan’s angle with station distribution
(source depth of 40 km)
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IB+OBS

The improvement by OBS
for the 40-km depth
would be significant!
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(Resolvability as good as in

the 10-km case !)
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Also Studied

(not shown here, please see “poster” outside)

e Frequency range:
— better resolvability when using higher frequencies
* Focal mechanism:

— no significant difference for 4 tested focal mechanisms

e Velocity Structure:
— no significant difference between different 1D layered models;
— better resolvability of the crust is slow

e Different configurations and density of land stations

— more land stations improve the resolvability

— 4 OBSs improve the resolvability more than 14 land stations




OBS Data

Real OBS data (NEAREST project,

Geissler et al., GRL 2010)

[Talk tomorrow at 9:30
Matias et al.]

Can MT’s be calculated from waveforms?




Real OBS data : Jan 11, 2008, Mw 4.5, depth =49 km

raw velocity (counts)
e BRasssams R e anas BREansass station No. 18
; ’ ’ : ’ no clip !

raw displacement (counts*s) — integrated
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. Zahradnik and Plesinger,

BSSA 2005 and 2010
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Correction procedure of

Zahradnik and Plesinger,
BSSA 2005 and 2010
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Correction procedure of

Zahradnik and Plesinger,
BSSA 2005 and 2010
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Forward modeling: Jan 11, 2008, M 4.5
frequency band 0.03 — 0.08 Hz

station no. 12:
the disturbance removal was not successful
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Conclusions

The MT resolvability can be studied without data (network
design), this capability is now added to ISOLA.

This type of study has a relative meaning due to poor
estimates of the data errors.

Effects of the frequency range, source depth, and network
configuration are significant.

MT’s of the shallow sources (10 km) are easy to resolve
well.

MT’s of the 40- and 60-km depth should profit from dense
land networks and/or OBS.

Use of regional OBS waveforms is a challenging task.




