

ORFEUS OBSERVATORY COORDINATION WORKSHOP

INTEGRATING SEAFLOOR AND LAND-BASED SEISMOGRAPHIC OBSERVATIONS

stituto de Meteorologia, Lisbon, May 25-28, 201

Kinematic Wavefom Inversion: application to SW Iberia Seismicity

Ana Domingues ana.domingues@ist.utl.pt ICIST, Instituto Superior Técnico, Lisbon, Portugal Susana Custódio susanacustodio@dct.uc.pt Centro de Geofísica, University of Coimbra, Portugal

Simone Cesca simone.cesca@zmaw.de Institut fűr Geophysik, University of Hamburg, Germany

NEAREST/WP3 Working Group

Ana Domingues

26-05-2011

Contents

Motivation

• Theoretical Framework

Method

- Results & Discussions
- Conclusions & Future Work

Contents

Motivation

• Theoretical Framework

Method

- Results & Discussions
- Conclusions & Future Work

Motivation

Regional earthquakes:

- Occurred between 2007 and 2009 in Southwest Iberia.
- Magnitude ranges M₁ (3.5 4.9) provided by IM;
- 16 earthquakes offshore
 1 earthquake onshore
- Depths vary between institutions:
 IM: 6 km 32 km
 EMSC: 10 km 76 km.

12th of February ,2007 earthquake:

- M_w 5.9
- Occurred beneath the Horseshoe Abyssal Plain

Motivation

- Poor azimuthal coverage
- Heterogeneous Crustal Structure Effect of the Cadiz sedimentary basin
 -> Leading to different epicentres for the same earthquake

Adapted from Morelli [2009], after Stich et al [2007]

Motivation

- Poor azimuthal coverage
- Heterogeneous Crustal Structure Effect of the Cadiz sedimentary basin
 -> Leading to different epicentres for the same earthquake

26-05-2011

Contents

Motivation

• Theoretical Framework

Method

• Results & Discussions

• Conclusions & Future Work

Theoretical Framework

Green's Functions:

- Response of the medium to the unit impulse.
- Earth model: Layered model (1D) [Stich et al, 2003]
- Data base generated using QSEIS, a code based on Thomson-Haskell propagator algorithm [*Wang*, 1999].

Range of source depth: 1-80 km (1 km of increment);

Range of epicentral distances: 1-400 km (1 km of increment);

Contents

Motivation

• Theoretical Framework

Method

- Results & Discussions
- Conclusions & Future Work

KIWI – KInematic Waveform Inversion:

Source model parameters (13)									
Time Lat Lon	Depth M	Strike	Dip	Rake	Rad	NucX	NucY	RuptV	RiseT
	General source description								
Source location	n	Radiation	patter	'n	Rupture process				
Scale of source model									
	Point sour	ce			Finite source				
Information from data									
Low frequencies					High	freque	encies		
Inversion priority									
	Step 1, 2				Step 3				

Step 1 – Focal Mechanism

- This is done in the frequency domain, by fitting amplitude spectra.
- Source parameters retrieved after this inversion steps are: strike, dip, rake (4 possible configurations), scalar moment and source depth.

Step 2 – Centroid Location

- This is done in the time domain, by fitting displacements time traces.
- Source parameters retrieved after this inversion steps are: strike, dip, rake (2 possible configurations), centroid relative location (North, East).

Step 3 – Kinematic Inversion

• Amplitude spectra inversion including high frequencies

• We fix the fault orientation (considering both the two possible fault planes), the centroid location (center of the extended source model) and the magnitude, and focus on the remaining parameters of the eikonal source model.

Contents

Motivation

- Theoretical Framework
- Method
- Results & Discussions
- Conclusions & Future Work

ID	Date	Time	Lat (^o N)	Long (°E)	Depth-IM (km)	Depth-EMSC(km)	M_l (IM)
1	17/02/2007	05:43:60	36.000	-10.431	33.0	40.0	3.7
2	06/03/2007	07:50:52	35.363	-11.446	25.0	60.0	3.7
3	10/04/2007	19:46:28	36.931	-8.869	28.0	20.0	3.5
4	01/07/2007	19:03:14	36.554	-12.066	10.0	30.0	4.9
5	06/11/2007	23:09:50	35.925	-9.074	30.0	10.0	3.8
6	11/01/2008	00:21:45	36.480	-9.944	17.0	20.0	4.7
7	14/04/2008	03:33:08	37.304	-9.317	25.0	30.0	3.7
8	10/05/2008	16:33:07	35.970	-10.801	20.0	20.0	4.1
9	17/07/2008	19:22:06	36.301	-9.806	6.0	76.0	3.8
10	09/09/2008	13:36:41	35.610	-7.017	20.0	35.0	3.9
11	17/02/2009	16:00:05	38.070	-8.570	6.0	10.0	3.8
12	22/05/2009	23:58:08	36.863	-9.676	21.0	20.0	3.6
13	05/07/2009	15:50:58	36.042	-10.440	31.0	30.0	4.4
14	18/08/2009	06:56:01	36.049	-7.924	31.0	40.0	4.2
15	05/09/2009	00:47:28	36.695	-12.714	10.0	10.0	4.2
16	08/09/2009	00:04:05	35.995	-7.944	32.0	71.0	4.0
17	18/09/2009	01:27:08	36.522	-9.722	32.0	25.0	3.7

Depending on the magnitude of the event, a bandpass filter is applied:

Magnitude range	Frequency range (Hz)
$M_l < 4.2$	0.05 - 0.1
$M_l > 4.2$	0.025-0.08

In order to have a better depth solution, a wide range of starting values (5-45 km) to perform the inversions.

ID	Date	$M_w(M_l)$	$M_0(Nm)$	Dep(km)	D-IM(km)	D-EMSC(km)	S1	D1	R1	S2	D2	R2	M1	M2	St	Q
1	17/02/2007	3.8(3.7)	9.98E + 14	25.4	33.0	40.0	38.0	83.0	-108.0	288.0	20.0	-22.0	0.497	1.169	4	С
2	06/03/2007	4.2(3.7)	3.46E + 15	35.0	25.0	60.0	225.0	60.0	-0.0	315.0	90.0	-150.0	0.473	1.051	2	D
3	10/04/2007	3.5(3.5)	3.03E + 14	25.4	28.0	20.0	180.0	58.0	-6.0	273.0	85.0	-148.0	0.388	0.822	5	Α
4	01/07/2007	4.4(4.9)	6.75E + 15	32.5	10.0	30.0	131.0	83.0	147.0	225.0	57.0	9.0	0.357	0.804	4	В
5	06/11/2007	3.6(3.8)	4.45E + 14	4.8	30.0	10.0	80.0	70.0	-76.0	224.0	25.0	-124.0	0.375	0.887	6	в
6	11/01/2008	4.4(4.7)	6.91E + 15	35.3	17.0	20.0	35.0	82.0	54.0	294.0	37.0	167.0	0.289	0.595	7	Α
7	14/04/2008	3.6(3.7)	3.73E + 14	29.5	25.0	30.0	199.0	74.0	-15.0	293.0	75.0	-163.0	0.381	0.892	8	В
8	10/05/2008	4.1(4.1)	2.14E+15	39.4	20.0	20.0	106.0	11.0	153.0	223.0	85.0	80.0	0.587	1.122	5	С
9	17/07/2008	3.4(3.8)	2.20E + 14	15.1	6.0	76.0	8.0	49.0	-157.0	263.0	73.0	-43.0	0.521	1.077	5	С
10	09/09/2008	4.3(3.9)	4.43E + 15	44.4	20.0	35.0	105.0	31.0	-140.0	339.0	71.0	-66.0	0.533	1.251	6	D
11	17/02/2009	3.4(3.8)	2.42E+14	15.0	6.0	10.0	34.0	80.0	12.0	301.0	78.0	170.0	0.421	0.800	8	В
12	22/05/2009	3.3(3.6)	1.44E + 14	25.0	21.0	20.0	47.0	66.0	43.0	296.0	52.0	149.0	0.399	0.959	9	В
13	05/07/2009	4.1(4.4)	2.69E + 15	41.2	31.0	30.0	126.0	84.0	143.0	221.0	53.0	7.0	0.296	0.600	7	Α
14	18/08/2009	3.9(4.2)	1.21E+15	36.0	31.0	40.0	97.0	84.0	49.0	360.0	42.0	171.0	0.325	0.930	9	в
15	05/09/2009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	08/09/2009	4.0(4.0)	1.44E + 15	30.3	32.0	71.0	8.0	49.0	150.0	119.0	68.0	45.0	0.499	1.222	7	C
17	18/09/2009	4.4(3.7)	6.66E + 15	40.4	32.0	25.0	51.0	73.0	-71.0	182.0	25.0	-136.0	0.598	1.120	6	С

Quality factor criteria:

	Misfit 1	Misfit 2	Nr. of stations
Quality A	< 0.400	< 0.850	≥ 5
Quality B	< 0.500	< 1.000	≥ 4
Quality C	< 0.600	< 1.250	≥ 3
Quality D	< 0.700	< 1.500	≥ 2
Quality E	< 0.800	< 1.750	≥ 1

	#
Quality A	3
Quality B	6
Quality C	5
Quality D	2

Earthquakes with $M_{M} \leq 3.5$:

Earthquake 10/04/2007 – Event 3

- Quality A (Misfit 1 0.388 Misfit 2 0.822 Nr. of stations 5)
- M_w = 3.5
- Depth: 25.4 km (IM- 28 km EMSC 20 km)
- Strike-slip behaviour with a minor normal component

Earthquake 10/04/07 – Event 3:

Earthquakes with $3.5 < M_W \le 4.0$:

Earthquake 17/02/07 – Event 1:

• Good agreement with previous solutions when the quality is good.

- 5 strike-slip
- 4 strike-slip with minor reverse component
- 2 strike-slip with minor normal component
- 4 normal focal mechanisms
- 1 reverse faulting sytle

2007 M5.9 Horseshoe Abyssal Plain (HAP) Earthquake

Different epicenters and moment tensor solutions for the Feb 2007 HAP earthquake:

- Different hypocenters for the same earthquake:
 - epicenter differences up to 30 km
 - depth differences up to 70 km
- Moment tensor solutions available based on global and regional networks (HARV, USGS, ETHZ, INGV, IGN, IAG);
- Focal mechanism from first motion polarity (IM).

Ana Domingues

Carrilho et al [2007]

<u>Step 1 – Focal Mechanism</u>

- Regional body waves.
- Frequency-domain inversion.

• Source parameters retrieved: strike, dip, rake (4 possible configurations), scalar moment M_0 , source depth.

Step 2 – Centroid Location

- Regional body waves.
- Time-domain inversion.
- Source parameters retrieved: strike, dip, rake (2 possible configurations), centroid relative location (North, East, time offset).

26-05-2011

North [km]

Ana Domingues

Step 3 – Kinematic Inversion

- Regional body waves.
- Frequency-domain inversion.

• Source parameters retrieved: strike, dip, rake (1 configuration corresponding to true fault plane), radius, area, [rupture velocity], nucleation point coordinates (along-strike and down-dip), [rupture time], average slip.

26-05-2011

Ana Domingues

Bootstrap Analysis:

The standard approach is to find a "best" solution that minimizes a certain misfit between the chosen data and synthetics.

Not only finding a "best" solution...

But evaluating the robustness of the solution using a bootstrap approach.

Simulating 200 different data configurations...

26-05-2011

Robustness of Source Parameters

- Different 1D crustal models:
 - PREM
 - Regional model S03 (Stich et al. 2003)
- Different datasets:
 - Regional vs teleseismic data
 - Inclusion/removal of stations towards the East
- Different wave types:
 - Full waveforms vs body waves only
- Bootstrap approach

200 trials per inversion

Ana Domingues

26-05-2011

Robustness of Source Parameters

- Agreement on point source solution.
- Source depth estimated in 39 km.
- Moment magnitude Mw 5.9

Robustness of Source Parameters

- Better performance for regional full waveforms (and teleseismic body waves)
- Difference in the preferred rupture plane (here NW-SE, with rupture directivity towards NW)
- The difference in misfit associated to the best faulting plane is often very small.

Bootstrap evaluation

Directivity

Unit Part Blaced St. St.

- Point source parameters:
 - Stable results
- Fault plane:
 - Preferred plane trends NW-SE
 - Less resolution in the teleseismic inversion
- Finite source parameters
 - Radius = 4–8 km
 - Average slip = 0.2 m
 - Unilateral to bilateral
 - Rupture towards NW

After Zitellini et al. [EPSL 2009]

26-05-2011

Tectonic Interpretation:

After Zitellini et al. [EPSL 2009]

After Zitellini et al. [EPSL 2009]

NEAREST project

- Relocated 36 earthquakes occurred between September 2007 and August 2008.
- Based on an OBS network deployed at the Gulf of Cadiz and offshore St. Vincent Cape.
- Four of the events studied by the NEAREST WP3 Working Group are also studied in this thesis.

Ana Domingues

Comparison : OBS network vs land network (present study) results

ID	Event	Agency	Lat (°N)	$Long (^{o}E)$	Depth(km)	Magnitude
		IM	35.925	-9.074	30	$3.8 (M_l)$
5	06/11/2007	NEAREST	36.263	-8.900	12	$3.5 (M_l)$
		present study	35.925	-9.074	4.8	$3.6 (M_w)$
		IM	36.480	-9.944	17	$4.7 (M_l)$
6	11/01/2008	NEAREST	36.497	-9.928	47	$4.2 \ (M_l)$
		present study	36.480	-9.944	35.3	$4.4 \ (M_w)$
		IM	37.304	-9.317	25	$3.7 (M_l)$
7	14/04/2008	NEAREST	37.215	-9.411	25	$3.6 (M_l)$
		present study	37.304	-9.317	29.5	$3.6 (M_w)$
		IM	35.970	-10.801	20	$4.1 \ (M_l)$
8	10/05/2008	NEAREST	35.974	-10.621	48	$3.8 (M_l)$
		present study	35.970	-10.801	39.4	$4.1 \ (M_w)$

	06.11.2007	11.01.2008	14.04.2008	10.05.2008
present work	В	A	В	c
NEAREST				

Courtesy of NEAREST WP3 Working Group

Ana Domingues

Influence of depth and location on the source results:

A set of simulations were performed using different values for depth and epicentral locations:

- 1. Hypocentral location provided by IM using land network;
- 2. Hypocentral location estimated by the NEAREST WP2 WG with the OBS network;
- 3. Epicentral location proposed by IM using land network and depth provided by the NEAREST WP3 WG using OBS network;
- 4. Epicentral location estimated by NEAREST WP3 WG using OBS and depth proposed by IM.

	06.11	.2007	11.01	.2008	14.04	.2008	10.05.2008		
	Land	OBS	Land	OBS	Land	Land OBS		OBS	
	EL: 35.925° N -9.074° E	EL: 36.263° N -8.900° E	EL: 36.480° N -9.944° E	EL: 36.497° N -9.923° E	EL: 37.304° N -9.317° E	EL: 37.215° N -9.411° E	EL: 35.970° N -10.801° E	EL: 35.974° N -10.621° E	
	D: 30 km	D: 12 km	D: 17 km	D: 47 km	D: 25 km	D: 25 km	D: 20 km	D: 48 km	
Land network (IM)	Depth:	29.9 km C	Depth:	29.6 km A	Depth:	26.2 km B	Depth:	20 km D	
OBS network (NEAREST)	Depth:	11.7 km C	Depth:	33.6 km B	Depth:	26.1 km B	Depth:	38.9 km D	
Epicentral location: Land network (IM) Depth: OBS network (NEAREST)	Depth:	11.8 km C	Depth:	34.7 km A	Depth:	26.2 km A	Depth:	39.4 km C	
Epicentral location: OBS network (NEAREST) Depth: Land network (IM)	Depth:	29.3 km A	Depth:	18.4 km A	Depth:	26.1 km B	Depth:	20.0 km C	

Contents

Motivation

• Theoretical Framework

Method

• Results & Discussions

• Conclusions & Future Work

Conclusions & Future Work

• Results are in good agreement with solutions published by IAG and IGN when the quality is good;

• Point source parameters in agreement with most published solutions of the 2007 Mw 5.9 HAP earthquake;

• Preferred fault plane oriented differently from previously published solutions (NW-SE, rupturing towards NW, radius 5 km);

• Our inversion results are supported by a careful analysis that includes bootstrap, and the use of different datasets and different velocity models.

• The depth is a difficult parameter to retrieve - the Kiwi tools results are closer to the NEAREST values, which we think to be more accurate than those obtained by IM.

• The quality factors are well-calibrated given that the poor quality assigned to the results (C and D) provide unstable solutions;

• This work provides an extension of the moment tensor catalogue in southwest Iberia (11 new solutions).

Conclusions & Future Work

