Synchronization of Long-Term OBS Seismic Recordings: the NEAREST Experiment

Luis Matias⁽¹⁾, W. Geissler⁽²⁾, S. Silva⁽³⁾, M. Romsdorf⁽²⁾, F. Carrilho⁽⁴⁾, S. Monna⁽⁵⁾, D. Stich⁽⁶⁾ and the NEAREST Working Group⁽⁷⁾

Instituto D. Luís
 Alfred Wegener Institute
 LNEG - Marine Geology Department
 Instituto de Meteorologia, I.P.
 Istituto Nazionale di Geofisica e Vulcanologia
 Instituto Andaluz de Geofísica
 http://nearest.bo.ismar.cnr.it/Partners

The NEAREST Passive Seismic Experiment

Levelling of seismometers

	14	2007									2008														
	()2/aug	01/sep	02/sep	01/oct	02/oct	01/nov	02/nov	01/dec	02/dec	01/jan	02/jan	01/feb	02/feb	01/mar	02/mar	01/apr	02/apr	01/may	02/may	01/jun	02/jun	01/jul	02/jul	01/aug
OBS1	s)	6			<u>i</u>						8.86.8		ŝ -								<u>8</u> 8 8	14	8-94-8	- 18	8 - 63 <u>8</u>
OBS 2	s	(Ž					z	82	z				yz –												
OBS 3	s)	(<u>;</u>				ŝ.												8				š. –		8 S
OBS 4																							1		
OBS 5	s)	2	8 - 8		8		8		8		8 - 3												3		8
OBS 6)	6																							
OBS 7					3 9		13 1 1		3		22		3 - 7		3		3		1		3		3		8 8
OBS 8		0																							
OBS 9	S)	(1																8		2 - 2		<u>8</u> - 8
OBS 10																									
OBS 11		(2		ļ i	ŝ - ŝ		8 B		ŝ (8 - B		ŝ j		8 j		ŝ j						8 1		8 8
OBS 12] [] [
OBS 13	S I	0																							8 8
OBS 14	1	0																							
OBS 15	1	1	<u>1</u>																i i				6 8		8 - 8
OBS 16																									
OBS 17	S I	(°					<u>i</u> 1														3		8 7		3 - 3
OBS 18																									
OBS 19			<u> </u>				1																		3 - 3
OBS 20																<u> </u>									
OBS 21					8 - S		2		2		1. A												8		8 8
OBS 22	S)	(
OBS 23	S }	{ <u></u>	2		9						1												3		0 8
OBS 24												<u> </u>				<u> </u>								<u> </u>	
OBS 25			<u>1</u>		<u>,</u> 3		<u>s</u> 1								2								2		t = t
			everythi	ing okay			UBST	Dattery	ow	-															
			1 comp.	Dead		-	UBS 4	time ok.	ay,stop b	YEND															
			2 comp	. Dead			UBS 4	time ok.	ay, disk h		-								_						
			3 comp	. Dead			S:	not syne	chronized	1		-							_						

Clock synchronization

Clock synchronization

Task: Estimate Time Drift Corrections for the unsynchronized instruments

Target: at least 0.1s precision for local, regional and teleseismic earthquake studies, integrating also land recordings

Comparison of land locations (in red) with OBS locations (in green)

Comparison of land locations (in red) with OBS locations (in green)

Purpose: train the land network to locate the Gulf of Cadiz earthquakes, epicenter and focal depth

Trial 1: Use a small set of the largest events and check the variation in P-phase station errors

Trial 2: Use Noise Correlation functions to estimate relative drifts between all clocks **Building the Noise Correlation Functions NCF**

Decimation to 10 Hz

Band-Pass Filter 4s to 12s

1 bit Normalization

Cross-Correlation

Stack

Time evolution of NCF OBS04-OBS05 90 day stack, every 10 days

Time evolution of NCF OBS05-OBS12 90 day stack, every 10 days

 $\delta \tau_{ii}(t) = D_{ii}(t) + \varphi(t) + \mathcal{E}_{ii}(t)$

Variation of surface wave travel time measured on the NCF

Time delay caused by a relative drift of the two station clocks

time-shift due to a change in the spatial distribution of the source

time-shift due to a change in the medium

$$\frac{\delta \tau_{ij}(t) + \delta \tau_{ij}(-t)}{2} = D_{ij}(t) + \frac{\varepsilon_{ij}(t) + \varepsilon_{ij}(-t)}{2}$$
$$\frac{\delta \tau_{ij}(t) - \delta \tau_{ij}(-t)}{2} = \varphi(t) + \frac{\varepsilon_{ij}(t) - \varepsilon_{ij}(-t)}{2}$$

Clock Drift is anti-symmetric

Material properties are symmetric

Change in source distribution is unknown, estimated to decrease with longer time series

Stehly et al., 2007

Clock Drift is linear with time

$$D_{ij}(t) = \alpha_{ij} t$$

Material properties and source distribution changes are NOT linear with time

$$\delta \tau_{ij}(t) = D_{ij}(t) = \alpha_{ij} t$$

Linear trends computed by cross-correlation

Linear trends computed for the pair OBS11-OBS22

49 useful slopes -> **drift** = **1.91** ± **0.26 s**/year

Is the drift of clock j in relation to reference

$$\alpha_{j0} - \alpha_{i0} = \alpha_{ij} \pm s_{ij}$$
 $i = 1,23$ $j = i+1,24$

Gives a maximum of 276 equations for 24 unknowns

Solution of over-determined system by SVD

Absolute drift is estimated imposing one set of reference clocks

$$\alpha_{i0} = 0 \pm 0.05 \, s \, / \, year \qquad i = 10, 15, 2$$

Results

Table 3 – Observed and computed clock drift values in seconds per year (s/year). All possible equations were used. $\chi_N^2 = 3.90$

OBS	Drift	$lpha_{i0}$	$\pm s$	OBS	Drift	$lpha_{i0}$	$\pm s$
obs01	—	0.70	0.16	obs14	-3.89	0.55	0.13
obs02	—			<u>obs15</u>	-0,09	0.02	<u>0.05</u>
obs03		0.78	0.14	obs16	-4.56	-0.73	0.12
obs04	1.53	0.41	0.10	obs17	—	-0.62	0.12
obs05		-0.08	0.13	obs18	-2.77	-0.25	0.12
obs06	1.50	0.54	0.13	obs19	-3.58	0.55	0.12
obs08	0.52	0.59	0.14	obs20	-3.46	0.57	0.11
obs09		-0.33	0.13	obs21	-2.67	1.48	0.11
<u>obs10</u>	-0 12	-0.01	<u>0.05</u>	obs22		0.91	0.11
obs1	1.05	0.96	0.14	obs23		-0.72	0.15
obs12	0.30	-0.75	0.13	obs24	0.37	0.42	0.15
obs13		0.76	0.12	<u>obs25</u>	<u>-0.10</u>	<u>-0.01</u>	<u>0.05</u>

Table 5 – Computed clock drift values in seconds per year (s/year) for two different data sets and 3 selection choices.

Results

			All inst	rumen	ts		Good instruments only						
	Selecti	ion (i)	Select	ion (ii)	Selection	on (iii)	Selection	on (i)	Selectio	n (ii)	Selection (iii)		
χ_N^2	1.8	84	0.34		0.5	0.52		1.23			0.31		
OBS	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	
obs01	0.66	0.27	0.78	1.07	0.78	0.43	*	*	*	*	*	*	
obs03	0.67	0.16	0.72	0.23	0.75	0.19	*	*	*	*	*	*	
obs04	0.29	0.12	0.34	0.19	0.41	0.17	0.13	0.14	0.37	0.25	0.41	0.23	
obs05	-0.16	0.15	-0.22	0.24	-0.11	0.18	*	*	*	*	*	*	
obs06	0.44	0.15	0.45	0.20	0.49	0.18	0.51	0.18	0.49	0.26	0.52	0.24	
obs08	0.45	0.16	0.50	0.19	0.53	0.18	0.53	0.24	0.58	0.28	0.62	0.27	
obs09	-0.43	0.14	-0.38	0.20	-0.37	0.17	*	*	*	*	*	*	
<u>obs10</u>	0.00	0.05	0.00	0.05	0.00	0.05	0.00	0.05	0.00	0.05	0.00	0.05	
obs11	0.83	0.16	0.87	0.25	0.94	0.20	0.82	0.26	0.92	0.48	0.92	0.42	
obs12	-0.89	0.15	-0.84	0.23	-0.83	0.18	-0.79	0.21	-0.79	0.29	-0.74	0.25	
obs13	0.67	0.14	0.76	0.18	0.75	0.17	*	*	*	*	*	*	
obs14	0.49	0.14	0.60	0.22	0.57	0.18	0.55	0.18	0.59	0.26	0.57	0.22	
<u>obs15</u>	<u>0.01</u>	0.05	0.00	<u>0.05</u>	<u>0.00</u>	<u>0.05</u>	<u>0.01</u>	<u>0.05</u>	<u>0.01</u>	<u>0.05</u>	<u>0.00</u>	<u>0.05</u>	
obs16	-0.76	0.15	-0.80	0.17	-0.79	0.16	-0.76	0.15	-0.80	0.17	-0.79	0.16	
obs17	-0.69	0.14	-0.65	0.19	-0.61	0.17	*	*	*	*	*	*	
obs18	-0.38	0.14	-0.34	0.19	-0.31	0.17	-0.30	0.19	-0.30	0.26	-0.27	0.24	
obs19	0.49	0.13	0.47	0.16	0.50	0.14	0.54	0.15	0.48	0.18	0.50	0.16	
obs20	0.60	0.12	0.68	0.16	0.65	0.14	0.60	0.15	0.66	0.17	0.64	0.16	
obs21	1.40	0.12	1.14	0.20	1.07	0.13	1.31	0.13	1.14	0.20	1.06	0.16	
obs22	0.75	0.13	1.01	0.20	0.99	0.17	*	*	*	*	*	*	
obs23	-0.72	0.17	-0.60	0.26	-0.68	0.22	*	*	*	*	*	*	
obs24	0.27	0.18	0.29	0.21	0.30	0.21	0.28	0.19	0.33	0.24	0.34	0.23	
<u>obs25</u>	<u>-0.01</u>	0.05	-0.01	<u>0.05</u>	0.00	0.05	-0.01	<u>0.05</u>	-0.01	<u>0.05</u>	<u>0.00</u>	<u>0.05</u>	

	All pairs			ion (i)	Selectio	on (ii)	Selectio	on (iii)			
χ_N^2	4.5	5	1.7	78	0.4	0	0.6	2			
OBS	$lpha_{i0}$	$\pm s$	$lpha_{i0}$	$\pm s$	$lpha_{_{i0}}$	$\pm s$	$lpha_{i0}$	$\pm s$			
obs01	0.63	0.17	0.64	0.27	0.79	1.07	0.75	0.43			
obs03	0.74	0.14	0.64	0.17	0.71	0.22	0.71	0.19			
obs04	0.41	0.10	0.28	0.12	0.33	0.20	0.38	0.18			
obs05	5.20	0.20	5.27	0.27	5.38	0.35	5.38	0.30			
obs06	0.54	0.13	0.42	0.15	0.46	0.20	0.46	0.19			
obs08	0.58	0.14	0.43	0.16	0.51	0.19	0.51	0.18			
obs09	-0.34	0.14	-0.45	0.15	-0.37	0.20	-0.39	0.18			
<u>obs10</u>	-0.01	0.05	<u>0.00</u>	0.05	<u>0.00</u>	<u>0.05</u>	<u>0.00</u>	0.05			
obs11	0.93	0.14	0.77	0.17	0.87	0.25	0.92	0.21			
obs12	-0.75	0.13	-0.90	0.15	-0.84	0.23	-0.83	0.18			
obs13	0.76	0.12	0.66	0.14	0.76	0.18	0.73	0.17			
obs14	0.56	0.14	0.49	0.14	0.60	0.22	0.59	0.20			
<u>obs15</u>	<u>0.02</u>	<u>0.05</u>	<u>0.01</u>	<u>0.05</u>	<u>0.00</u>	<u>0.05</u>	<u>0.00</u>	<u>0.05</u>			
obs16	-0.73	0.12	-0.76	0.15	-0.80	0.17	-0.79	0.17			
obs17	-0.63	0.12	-0.72	0.14	-0.66	0.19	-0.64	0.18			
obs18	-0.27	0.12	-0.41	0.15	-0.33	0.19	-0.34	0.18			
obs19	0.54	0.12	0.48	0.13	0.47	0.16	0.49	0.14			
obs20	0.57	0.11	0.59	0.13	0.68	0.16	0.64	0.14			
obs21	1.50	0.11	1.41	0.12	1.14	0.20	1.07	0.13			
obs22	0.90	0.11	0.73	0.13	1.01	0.20	0.98	0.17			
obs23	-0.72	0.15	-0.73	0.16	-0.60	0.27	-0.69	0.22			
obs24	0.50	0.15	0.26	0.18	0.29	0.21	0.29	0.21			
<u>obs25</u>	-0.01	0.05	-0.01	0.0	-0.01	0.05	0.00	0.05			

Table 6 – Computed clock drift values in seconds per year (s/year) with OBS05 artificially delayed. 4 cases are represented.

Testing the methodology

Results

Breakthrough: The NERIES OBS meeting in Paris – meeting with Klaus Schleisiek, General Manager of SEND

Temperature variations

Principles

Calibration error

es mein teder during landing and escending of OES, lower at eached with steady temporatures

increase of drift decreases with operation time. Influence can be reduced by re-calibration

can be reduced or avoided by accurate calibration and shert re-calibration intervals

Details of Drift Correction Determination of contraction value its using the linear. Instant of should doub. The termaining intermutate date to nore trease effects. Company of the Subtraction of linear diff. trend (green line) tren. THE OWNER WHEN manual with MSG. recorder at constant Removalure of STC over a period of 7.8 days. 23 Millioning graphic of something with a real

Extrapolated inaccuracy for a 365 day operation:

red line belongs to an MBS with several month operation time in total blue line belongs to an MBS with approx. one month operation time.

What if you cannot synchronize the clock after recovery? What would be the expected time drift?

distanced (1.7 ms per day)

.....

Cell[®] correction

and the second second

100 B 100 B

Antiparticle of Statistics and Statistics

Increased of Accession in the

of the second second

• What happened?

I suspect an anomaly, namely, either the synchronization time (GPS-command) or the skew time (SKEW or DRIFT command) was off by 3 or 4 seconds. We have seen this in the past. There is even an (unpublished) command in the MCS to correct that: SECONDJUMPS. But now, it is too late to apply it. You have to look at events at the beginning, in the middle, and at the end of the recording and compare it with "good" OBS data to decide what happened.

Klaus Schleisiek

Trial 3: Back to square one. Revise earthquake phase data, integrate with NCF, propose a time correction for <u>all</u> instruments

Table 3 – Clock drifts in seconds per year after an integer second correction is applied to the skew time measured onboard.

OBS	Drift	Correction	OBS	Drift	Correction	
000	s/year	S	000	s/year	S	
OBS01			OBS14	0.348	-4	
OBS02			OBS15	-0.086	0	
OBS03			OBS16	-0.277	-4	
OBS04	0.482	1	OBS17			
OBS05			OBS18	-0.633	-2	
OBS06	0.451	1	OBS19	0.688	-4	
OBS08	0.522	0	OBS20	0.816	-4	
OBS09			OBS21	0.542	-3	
OBS10	-0.123	0	OBS22			
OBS11	1.053	0	OBS23			
OBS12	-0.761	1	OBS24	0.377	0	
OBS13			OBS25	-0.099	0	

Argument: an improved correlation with clock drift estimated by NCF

y = 0.9602x + 0.0241 $P^{2} = 0.815$ Comparison of Drifts (s/year)

Selection of 296 best located events in the area defined by the OBS network

Using double differences instead of residuals

Searching for an absolute time reference: integration of land recordings

We used 118 events also recorded by the land network

Systematic drift of the land stations when compared to the OBS data

Table 6 – Clock drifts in seconds per year computed from the evolution of Pwave arrival residuals for the land stations.

Station	Drift s/year	±σ	Ν	Station	Drift s/year	±σ	Ν
PBEJ	-0.721	0.328	38	PBAR	-0.615	0.220	77
PTEO	-0.523	0.199	88	PVAQ	-0.542	0.147	100
PBDV	-0.588	0.155	88	MORF	-0.574	0.140	87
PFVI	-0.521	0.126	96	MESJ			
PDRG	-,		-	All	-0.540	0.068	502

Table 9b – Clock drifts in seconds per year computed from the evolution of P-wave arrival residual double differences for the land stations, IM bulletins.

Station	Drift s/year	±σ	Station	Drift s/year	±σ
PBEJ	-0.377	0.040	PBAR	-0.515	0.027
PTEO	-0.541	0.021	PVAQ	-0.379	0.017
PBDV	-0.371	0.017	MORF	-0.428	0.017
PFVI	-0.400	0.017	Average	-0.430	

A proposal of time drift corrections to be applied to the NEAREST dataset

- All 3 methods investigated fail to find any time drift greater than ± 2 s as measured onboard
- All 3 methods are coherent with correlation slopes between 0.7 and 0.9
- The information provided by SEND allowed us to include in the problem the proposal of integer time corrections
- We use as absolute time-reference the land station Pwave arrivals and derive all other corrections using the double-difference time residuals method

Table 3 – Clock drifts in seconds per year after an integer second correction is applied to the skew time measured onboard.

OPS	Drift	Correction	OPS	Drift	Correction
065	s/year	S	063	s/year	s
OBS01			OBS14	0.348	-4
OBS02			OBS15	-0.086	0
OBS03			OBS16	-0.277	-4
OBS04	0.482	1	OBS17		
OBS05			OBS18	-0.633	-2
OBS06	0.451	1	OBS19	0.688	-4
OBS08	0.522	0	OBS20	0.816	-4
OBS09			OBS21	0.542	-3
OBS10	-0.123	0	OBS22		
OBS11	1.053	0	OBS23		
OBS12	-0.761	1	OBS24	0.377	0
OBS13			OBS25	-0.099	0

A posteriori drifts from DD time residuals

Table 11b – Clock drifts in seconds per year computed from the P-DD method, fixing the land station drifts to zero and the synchronized OBS to Table 3 values.

Station	Drift s/year	±σ	Station	Drift s/year	±σ
PBEJ	-0.003	0.017	PBDV	-0.003	0.012
PBAR	-0.046	0.016	MORF	-0.034	0.012
PTEO	-0.081	0.014	PFVI	-0.021	0.012
PVAQ	-0.006	0.012	Average	-0.028	

Preliminary evaluation: average residuals for the 296 events

Location is performed adjusting Vp/Vs and finding the best station time delays that account for local structure differences

RMS=

 \mathbf{R}

NO Correction:
CRUISE Correction:
NEW Correction:

After all this wold correction and 13 corrections 3.5% improvement over NO provement over CRUISE

Average station delays

Station terms from tele-seismic tomographic inversion

